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_or one with a unigye solutiog. . 'The form

2. 3Basic Mleas of GRG ;
?

b 3

The mPnlinear progz=m to be solved is assumed £o have the form

nimize f(X) (1)
subject to 84 (X3 =0, i=1l.....m {2)
. and FisE suol=1..0 (3

where X is n-vector and » are given lower and upper bounds uy > ﬁgf

}

i
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¥
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4
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We assume m < n since, in wost cases, m > n implies an infeasible problenEg

- 3 is comp ctely general,

-~

since inequality constraints mav always be transformed to equalities, as in (2),
by the addition of slack variables. The vector Y contains as components toth
the '"natural" variables of the problew and these slacks.

The fundamental idea of GRC is to use the equalities (2) to express

A Ty (. -

m of the variables, called basic variables, in terus of the remaining n-m nounbasic

variables. This is also the way the Simplex Method of linear programming

operates. Let X be a feasible point and let y be the vector of basic variables ‘

and x the nonbasic at'f, so that X is partitioned as

X= (y,%), X = (y,% (&)

and the equalities (3) can be written

gly,x) =0 (5)

where
g = (31""’gm) (6)
Assume that the objective f and conscraint functions B are differentiable.
Tuen,by; the implicit function theorem, in order that the equations (5) ha o

a solution y(x) for all x in some neighborkood of %, it is sufficient that
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Assume that it is5. Then the cobjective may be expressed as a function
of x only: ;

F(x) = £(y(x),x) { (7)

and the nonlinear pregram is trawnsformed, at least for x close to x, to

a reduced problem witi only upper and 1qher bouncs:
minimize F(x) ‘ (8)

subject to H
;
fNB xS ug _ 9
P
where ﬁﬁB and Y are the vectors of bounds for x. GRG solves the o*iginal
problem (1)-(3) by solving a sequence of problems of the form (8)-(9).

Such problems may be solved by simple modifications of unconstrained minimi-

f

!
For the reduced problem (8)-(9) to yvield useful vesults, it is necessary

zation algorithms.

that x be free to vary about the current point x. Of course, the bounds

(9) restrict x, but it is easy to move x in directions which keep these
bounds satisfied. The bounds on the basic variables, however, pose a more
serious problem., If some components of §'are at their bounds, then even a
slight change in x Jrom ;'may cause some bound to be violated. To guarantee
that this cannot happen, and te insure the existence of the functiom y(x),

we assume that the following condition holds:

Nondegeneracy Assumpticn

At any point X satisfying (2)-(3), there exists a partition of X into
m basic variables y and n-m nonbasic varliables x such that
,@.B <y <y (10)
where fB and u, are the vector of bounds y aud
8 = 3g/%y 1is nonsingular (11)

e assumptfon is quite mild as we show lcter.
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Consider now starting from the feasible point X with basic variables

vy and nonbasic variables x, and attempting to solve the reduced problem
By (7))to evaluate the objective F(x), we must know the values

(8)-(9).

of the basic variables y(x).

Of course, except for linear and 2 few
nonlinear cases, the function y(x) cannot be determined in closed form.

However, y{x) can be computed for any given x by an iterative method which
Hence a procedure for solving the reduced

solves the equalities (5).

problem starting from XOE X, is

(0} set 1 =0
(1) Substitzte x, into (5) and determine the corresponding values

for y,yi,by an iterative meti.cd for solving nonlinear eqr:z+ions

(2) Determine a direction of motion, di’ for the nombasic variables x

(3) Choose a step size ®; such that

Xj41 T % POy Gy
This is ofren dore by solvirg the one dirensional search problem

ninindze F(xj + adi)
with o restricted such that X + adi satidfies the bounds on x. This

one dimensional sescch will require repeated applications of step (1)

to evaluate F for various a values.
(4) Test the caviernt point Xi " (yi,xi) fur optimeli:y. If not

optimal, set 1 = 1 + » and raturn to (1).

If, in step (1), the value cf one or more components cf ¥y exceed
Fer simplicity,

their bounds, the iterative procedure must be interrupted.
Tanen this variable must

assume only one basic variable violates a bound,
be made nonbasic and some component of x which is not on a bound is made basic.

After th.s change of hasis, we have a new function y(x), a new function F(x),
These ideas are illustrared geometrically In

and a new redured problen,
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Figure 2.i. The initial point X is on the curve &) {X) = 0. We have
taken the basic variazbles as (x3,x1), although the only variable that
cannot be baslc is Xps since it is at lower bound of zero. The objective
of the first reduced problem is FI(XZ’X4)’ whick is just the objective f as
measured on the curve 8y = 0 It is possible that the algorithm minimizing
Fl might release x,; from its lower bound of zerc, in which case we would

move interior to g8y = 0. Assume, for purposes of i.lustration, that this
dces not nappen. Then we move along By = 0 as indicated by the arrow until
we hit the curve g1 = 0. At this point the slack for g1sXq, 80€S to

zero. Since it is basic, it must ieave the basis, to be replaced by ome

of the nonbasics, Xy OT X;. Since X, is zero, %, becomes hasic. Now we

have a new ovpjective, FZ(XB’X4)’ with xq and x, at lower bcound of zero,

The algorithm ortimizing FZ will determine that, if either X3 OT X, is
released from its lower bound, F2 can be decreased. Assume X, is relaeased
from its bound {actually Xq and X, might both be released from their bounds).
Then the algorithm will begin to minimize FZ’ which is simplv f as measured
along the curve 8 = 0. Motion is towards the Xy axis. Upon reaching it, %y
becomes 7z:ro, and another basis change occurs, with X3 becoming nonbasic

and X, becoming basic. Then optimization of the new function F3(11,x3)

will terminate at the constrained optimum of £,

The Reduced Gradient
]

éRG can be implemented without using derivatlves of f or the 8y

Thies requires methods for solving noulinear equations and fer minimizing
nonlinear functions subject to bounds which do not use derivatives. Although
such meihods exist, there arve a much greater variety which do require
fevivatives, The efficiency of these is better understood, and theilr use

ir laree problems is hetter established.
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Hence we concern ourselves from now on with GRG algorithms which require
first derivatives of f and g.
In minic! Ing F using derivatives, we must have 2 formula for YF,
F is guaranteed to be differentiable if f and g are, and if 3g/3y is non-
singular, since then the implicit function y(x) is differentiable. By(f)

aF/3xy = af/axi +(af/ay)T ay/axi (12)

To evaluate Bylaxi, use the fact that, if

gj(y(x).x) »0, =1,...,m
for all x in some neighborhood of x, then

dgj/dxi =0 = (3gj/dy)T3y/%xi + agj/axi, = 1,00.,m
or, in matrix form

Yag/ay) 3y/8xi + ag/E)xi = {)
Since (9g/3y) is nonsingular at X

aylbxi = ~(ag/8y)—l aglax, = B-laglaxi (13)
Using (13) in (12)

OF/ax, = 9Ejdx, - (E/ay)T BT aglox, (14)
Let

1 (15)

= (3£/5y)T B”
As is shown later, the m~vector = is the Kuhn-Tucker multiplier
vector for the constraints g. Using (15), the components of VF are

T

aF/ax, ~ 3£/3x; - v 3g/ix, (16)
Equation (16) reduces to the formula for the relative cost factors
in linear programming [1] 5f f and all g, are linear. Then, Bflaxi = Cys
/3y = cy (the objertive coefficients of the hasic variables) and aglaxi = Pi’

the column of constraint coefrficients for X, . The vector u is the simplex

multipiier vector.
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Relation of Reduced Gradient Pormulz and Kuhn-Tucker Conditions

If X (s optimal for (1)-(3), and :f the gradients of all binding
constraints of X are independent (see [21), then the Kuhn-Tucker conditions
hold at X. Te write these, let u be a Lagrange multiplier vector for the
equalities (2), and ¢ and 8 be multipliers for the lower and upper bound
constraints respectively. The Lagraagian for (i}-(3) is

L=f+ﬂg+a([-X)+8(Y.~rr)

Thz Kuhn-Tucker conditions,written in terms of y and x, are

3L/3y = 3£/3y + TB - + 8 =0 (17
3L/3x = 3f/3x + 7 3g/ox - e + B = 0 (s}

«>0,8>0 (19)
alf-x) = 8(x~m) = 0 (20)

where ay, Sy are subvectors of o and B corresponding to the basic variableas

y, and simlilarly for s 3 . If X is optimal, there exist vectors T,

»

@, B which, together with X, satisfy (17)-(20). Since y is strictly
between its bounds, (20) implies
=8 =0

% Ty
Then (17) implies

T = - 3f/3y B_l
so the vector " in (15) is the multiplier vector for the equalities (2).
Then {18) may be written

/3% + ™ 3gfix = N T Bx (21)

The left hand side of (21) is simply the reduced gradient, VF(x).

To relate (21) tec the problem (8)~(9), if X, is strisctly between its bounds
then @, = Sx = 0 by (20), so

i i
TF/%Xi = 0 (22)
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143 Xy at lower bound then 8 = 0 so
X
3
.F/?xi e >0 (23)
X,
while if x5 is at upper bound. a. = 0 so
3
aF/ex, = -Bxi <0 (24}

But (22) - (24) are just the optimality conditions for ine reduced problem
(8) - (9). Hence the Xuhn-Tucker conditions for (1) - (3) wmay be

viewed as optimality conditions for the reduced problem (8) - (9),

and r in the formula for the reduned gradient is the Kuhn-Tucker multinlier
vector. This vector is useful for semsitivity analysis, and GRG provides

it as a by-product of its computations.

I DA W A TV

A




TR

-0-

Pelation of Na.degeneracy Assumption and Luenberger

Constraint Cualification

Let X° be an optimal solution <o (1) - (3). Luenberger
[2] has shown that a sufficient condition for the Kuhn-Tucker conditions
to hold at ¥ is that the gradients of all birding constraints be iinearly
independent.

Assume that this is the case. Then, at most n of the 2n + m
constraints (1) - (3) can be binding at %°. Since all m of the equalitiec
(2) are binding, at most n-m of the constraints {3) can be binding, 1.e at
most n~m of the variables Xi can be at a bound. Hence there will be at
least m veriables X, satisfyﬂng‘ﬁi < X: <y Consider now the Jacobian

matrix of the binding constraints evaluated by XO. If all variables not at

bounds are grouped together, this Jacobian has the structure

k > m variables ! n - % variables
not on bounds ! on bounds
|

Aﬂ
Cr |
m equality 1° 1°
TOWS 2: 1 2
n-k (/
bommd >
TOWS y 0 In—k
<i_ - -

Since this matrix must have all mt(n - k) rows linearly independent, it
must have this same number of independent columms. Since the n - k
rightmost columns are independent, the submatrix Jg must contain m
)
independent columns. Let B~ be a nonsingular m x m submatrix chosen from
37 o
1 and let y be the m~vector of * .riables assoclated with the columns of B®,

with x the vector c¢f the remaining n - m variables. Then {_ < yo <y

~B B

P G
1'% Y9 nenaingular,
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Tha: is, the nondegeneracy assumption stated earlier is true at Xo, so

it is implied by Luenbergers constraint qual:fication. This information

is useful, since Luenbergers qualification appears to be satisfied at the
optimm, indeed at all feasible points, of all but a few pathological
nonlinear programs. However, problems can arise where the binding conmstraint
gradients beccme nearly dependent, and then B becomes nearly singular,

and its inversion and other operations with it become numerically unstable.

A computer program implementing GRG must test for this near-singularity

and attempt to correct it 1f it occurs.

Nt e, ST SOy




3. A GRG Algorithm

in this section we decribe *he GRG algorithm developed during the
period Nov. 1972-Nov. 1973. The major differences between this algorithm

and the procedure described by Abadie in [3) and [4] are:

1. The algorithm works oaly with the currently active constraints.
Since, in most problems, not all constraints are active, this
can ease computations considerably. The basis matrix has a row
for each active constraint, and changes size as constraints are
encountered oxr dropped. Gradients of inactive constraints are
not required, a significant advantage in problems with many
constraints.

2. The algorithm used to optimize the objective on each constraifit
intersection is the Davidon~-Fletcher-Powell (DFP' method [3], modi-
fied to account for upper and lower bounds. This should yield
more rapld convergence than the gradient or conjugate gradient
procedures used by Abadie.

3. A new procedure has been constructed for deciding whether
"to Incoxporate a constraint into the current zonstraint basis.
The constraint is incorporated if the one-dimensional
ninimum currently being sought is on the boundary of the current
constraint intersection. Mechanisms for determining this effi-
clently in the context of GRG have been developed.

4, A new basis change procedure is used. In {2], Abadie wmakes a
basis change 1f a basic variable violates one of its bounds during
the Newton iteration, This can lead to "{alsa" basis changes if
the Newton algorithm is not converging, or is convergirg but not
monotonically. We wait until the Newton z2lgorithm has converged,
then treat the violated bound as a newly encountered constraint,
and apply the procedures in (3) above. This insures that the
objective value after a basis change is lower than all previcus
values (this is not true in Abadies realization).

5. The one-dimensional search is the core of the algorithm and is
crucial to its efiiciency. W¥e have adopted tte algorithr deseribed
in [¢g] to operate within GRG. This prccedure is the result of

. many years of development, and computational results ucing it in un- *

cmmiw.qd winimizatied heve Dosm excallemt.

We pow.prosent gmd discuen flow chute of our GRG algerithm emdl, in thda

—

context, discuss the above ideas in more detail. Thealgorithm currently

requires a feasible starting point. Work during the next vear will include

3
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cdesigning a phase I procedure, which will find a feasible point or
determine that none exists.
Let X = (;, X) be a feasihle po‘nt for the comstraints (2) - (3).

Further, suppose that the first m constraints are equalities, and
the remaining m, are inequalities, with oy + m, = m. That 1s, the
constraints may be written:

gi(x) =0, i= 1,...,ml

gi(x) >0, 1= o, + 1,...,m
We define the index set of binding comstraints at X as

I8¢ = {i]g, (X)= 0}
The surface defined by a set of active constraints will be czalled the
constraint intevsention, S:

S = {Xlgi(X) = 0, 1eIBC}
GRG moves frcim one such surface to another as new constraints become binding
and previously binding constraints become positive. Ir our realization of
GRG, while on a particular constraint intcrsection, we ignore the positi e
constraints, except for evaluatirg them at each point to check that thev
are still vositive. The constraint basis at X contains a row for each index
in IBC. Since the slacks of binding constraints are zero (i.e at lower
bounds}, there will never be any slacks in the basis, If there are NB
binding constraints, the NB basic variables are all chosen from the n
"natural" variables, Xl"‘°‘xn’ vhile the n nonbasics are the remaining

n - NB natural variables, plus the NB slacks of the binding constraints.

Use cf Goldfarb Variable Me*ric Algorithm

Since GRG requires at least partial solution of a number of reduced
problems of the form (8) - (9), each algorithm for solving such probleuws

Teads to a variant of GRG. The choice of algorithm {s critical, since once

e ek
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GRG approaches an optimuam, and no more basis changes cceur, its convergence
rate is that of the algorithm selected. It would be foolish to use the
method of steepest descent, as its convergence rate is at best geometric,
with s vory small ~onvergence ratio for problems whose Hessian at the
optimum is badly couaditioned [2]. The conjugate gradient method used

by Abadie is superlinearly convergent [2], but meny computational

experiments have shown it to be considerably slower in practice

(in terms of number of _teratlons) than methods of the variable
metric class [2]. For this reason, we have chosen the variable metric
method of Goldfarb [5], simplified for the special case cf bounded
variabies, to soclve the reduced probleus.

The flow chart entitled "Main GRG Program" illustrates our
adaptation of Goldfarbs algorithm. The algorithm is very much as decribed

in {5], but simpliffed for tne special case of bounded variables (see [7]).

The flow chart is almost exactly as it would be if the only constraints present

were the bounds on the nonbasic variables. All the logic required to deal
with the ponlinear constraints (2) is in the one dimensional search
subroutine on page 2 of the chart. The algorithm chooses search directions
by the formula

d, =~H, VF (xi)

i i

where Hi is an n x n symmetric positive semi~definite matrix. This

matrix projects any vector onto the bounds, i.e, for any vector v, Hv is zero
in the ith position if Xy is at a bound. The initialization in block 1,

page 1, and the updating of block 3, page 2 (vhich forces row and column r

of H to zero when X, hits a bound) guarantee that H always has this property,

The algorithm will minimize a positive definite quadratic objective, subject

to upper and lower bounds, in & finite numter of iterations. If .at the optimum,

n, < n of the variables ace at their bounds, then, once these variables rzach

1
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their bounds, the optimal values of the remaining ones will be found in at

nost n - 1y iterations. Further, the nonzero rows and columns of H form a
positive definite matrix which will converge (in the case of quadratic objecfive)

to the inverse Hessian of the function of n - nj variables formed by replacing

tﬁe n varigbles at bounds by the values of those bounds.

Block 2, page 1 of the flow chart, is performed as follows:
The Kuhn-Tucker multiplier for the lower bound constraint on Xy is Af = 3F/axi,
and for the upper bound A: = —ap/axi. if x is at lower (upper) bound and
lg (A:) is negative, then F can be decreased by increasing (decreasing) Xy
i.e. by moving away from the bound. In our program, from all variables at
bounds whose multipliers are negative, we choose the variable with the
multinlier of largest absolute value. If this value is iarger than twice
I d, || (where || || indicates Euclidean norm), we allow this variable
to leave its bound by setting the corresponding diagonal element of H
(currently zero) to one. This causes || dy || to increase. We then test
the remaining boundel varicbles for negative multipliers, and repeat the
above prccedure. The test against || di il insures that we do not leave a
constraint subspace until || d1 || becomes "small enough". This helps te
prevent zigzagging, where we constantly leave and then return to the same

subspace. .
Goldfarbs algorithm provides search direntions for the one

dimensional search subroutine, in which the variables of the problem are

assigned new values. This subroutine {inds a first local minimum for the

problem

minimize F(x + &d)
where F is the reduced objective, x the initial values of the nonbasic
variables, an? d the search direction. The fteration subscript,

i, has hecr dropped for convenience. The di-eccion d i« always a diraction
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of descent, i.e

aT wF () <0

The procedure starts with a search for three o values, A,3, and

C, whizh satisfy

0<A<B<C

F (x+Ad) > F (x + Bd)
and

F (x + cd) > F (x + Bd)
Then the interval [A,C] contains a local minimum of F(x + ad). In
block 18 of page 1 of the one dimensional search flow chart, a quadratic
is passed through A, B, and C, with its minjmum a% D. On page 3 of the
flow chart, the points A, B,C, D are used to initiate an iterative cubic
interpolation process which yields the final o value.

The logic on the first two pages of the flow chart locates the

points A, B, C. In doing this, the choice of initial step si:e, s
(block 1, page 1), is important. With Goldfarbs algcrithm or other
variahle metric methods, @ is set equal to the optimal « value from the
previous search except when this causes too large a change in the variables.
The theoretical basis for this 1s that, as a variable metric converges,
the optimal o values should converge to 1, the optimal step for Newton's
Method. Hence the previous optimal step is a good spproximation to the
curreat one. This must be modified when the method is restarted, for example
when a new constraint is encountered or the basis is changed, since then
sn optinal step much less than unity is genmerally taken. Hence, we require
that the change in any nonbasic variable larger than.10'3 in absolute value

not exceed .05 times its value, while the change in any variabls smaller

Ve

s o m———— .

i




I W, SR

-16-

than lo—in absoluce value cannot exceed 0.1. If the largest a value
meeting these conditions is al, then, ac jteration i, @ is given by
x, = min (a;_;, al)

The loop 2 - 3 - 4 -~ 5 halves the step size urntil a value FB < FA
is achieved, or until SLPFLG = 0. The variazble SLPFLG is initialized
at zero in subroutine NEWG and is set to unity in block 3 of the NEWG
flow chart 1f a new constraint has been encountered and the minimum along
d 1s interior to that constraint. The test in block 6 of the one
dimensionai search flow chart is false only if the step size has been
halved at least once in 2 - 3 - § - 5, in which case K1 is the function
value correspoading to C. The test In block 7 prevents the subroutine
from trying to pass a quadratic through 3 points which are too widely . §
separated in funczion value. It also insures that the subroutine will l

cut back the step size if a large function valve 1s returned by block

3. This is used to force a cutback when the NEWTON algorithm in block 3

does not converge, by setting FB to 1030. The test on FC in block 1Z has
the same purpose. If Ki is too large, then block 8 gererates a new C |
point 1/3 of the distance from B to C. Then the loop 8 - 9 ~ 10 - 11 - 12

is traversed until FC 1is not too large.

With R = 0 (which cccurs if and only 1if (a) a Xl or FC which was

too large has mnever been genersatcd, or (b) SLPFLG = 0, the loop 10 -~ 14
transforms the points, A, B, C in figure 3.1(a) into those shown in figure
3.1(b). The step size is doubled each time until the points A, B, C
bracket the minimum. If K1 or FC ever becomes too large, or if SLPFLG = 1,
R ig set to 1 (block 9). Then (10) -~ (14) transforms points a3 shown

in figures 2.2 (a) thru 3.2{(c). Instead of doubling the step, a comstant

30
increrent, B = A, is added, Since FC may have been set to 10
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when NEWTON did not converge ia bleck 21, there must be a provision
for resetting R to 0 when 3 steps of size (C-B)/3 have been taken.
This is accomplished b¥ blocks 15, 16, and 17.

The quadratic interpolation in block 18 yields 2 fourth point,
D, with function value FM, somewhere between A and €. In block 19, a
cubic polynomial is passed through the 4 points FA, FB, ¥C, FM, and
its minimum is located at the point E. The optimality tests iu block
20 are passea if the percent difference becween (a) the F values at the
current and previous interpolated points and (t) the values of F and
the cublc at E are sufficiently small. Currently § = 10-4. In block
21 the usual situation is as shown in figures 3.3 (a) and 3.3 (b).
Removal of an end point leaves 4 prints which bracket the minimum and
these are used in the next cubic €it, If a bracker cannot be formed by
removal of an end point, the highest end point is discarded and & new
cubic fit ic performed. Such a situation is shown in figure 3.4.

If the optimality test in block 20 is passed, and the point E
is less than a, then E is accepted as optimal, Otherwise, F is evaluated
at o in block 22. If its value there is smaller than F(i}, « is returned.
If not, and FC > FB, the quadratic interpolation block iz entered; otherwise,
the subroutine terminates with an error message,

The blocks in the one dimeasional search flow chart labeled "E valuate
F (X + ad)" are where the basic variables are changed in response to
changes in the nonbasics., As shown in the accompanying flow chart,
this block contains 2 subroutines, Sutroutine REDOBJ uses a Newtnn iteration
to find new values for the basic variables y, given the values X + ad for
the nonhasics. It also chacks for vioiations of currently nonbinding

constrainte and of hounds on basic variables, usirg subroutine BSCHNG

te deal w't* these Sounds.
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Subroutine NEWG decides whether or not to stay on @ newly encountered

constraint. We now proceed to discuss these subroutines.

Subroutine REDOBJ (REDuced OBJective) is the first routine discussed

thus far that is not very similar to a procedure for unconstraired minimization.

Its input is a vector of nonmbasic variables x = x+ ad, vhere a is the
current trial valune of the step size, and X is the vector ofnonbasic variable:
at the start of the one dimensional search. It solves the system of NB
nonlinear equatlions

g; (y. x+ ad) =0, 1€ IBC
for the NB basic variables y. As in [3] and [4], this is done using the
pseudo-Newton algorithm

-1 A - )
%H~Yt—3 QmBva+a&,t—MLt“.

.

whe;%:jg% is the vector of binding constraints.
.The algorithm is called pscudo~Newton because Bml is not re-evaluated at each
step of the algorithm, as in the standard Newton method. Wher. - is given
its first trial value in a particular one dimensional search, ﬁ‘is equal to
the feasibfé point X with which we began the search. As long as Newton
converges, Q remains equal to i} at least until the search 1s over. 1If
Newtcn faills to converge, Q may be set equal to the most recent feasible
point, and B_l is recomputed.

To explain blocks 1 and 2 on paze 1 of the REDOBJ flow chart, consider
the tangent plane to the coastraint surface at X. This is the set of ali

vectors (a,b) satisfying

(3g/9y)a + (3g/3x) b = 0

- ———
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where all partial derivative matrices arz evaluated at X. In GRG, the
change in x%x, b, is given by

b = ad
The ccrresponding vector a is called the tangent vector, v. Since any
scale factor multiplying v is unimportant, we may as well take a = 1,
y:.elding

v= (3g/ap)™" (3g/om)a (25)
In our program, v is computed at i; the initial point of the one
dimensional search. This vector is used to find initizl values, Yor by
the formula

Yo ° §'+ 4, v
as illustrated in figure 3.5. Using these initial values, Newton finds
the feasible point Xl' Then, at Xl. v 18 not recomputed. The old v is
used, but emanating now from Xl’ to yleld the next set of iniiial values

as
Yo =¥yt (ay - o)y

Usiig these, Newton finds the point X, of figure 3.5, This procedure
is repeated until Newton fails to converge (or until the one dimensional
sear:h is over), whereupon v is recomputed at the last feasible point.

Both this legic and the logic of computing B—l have the objective

of computing derivatives o f and the binding B » and of inverting B, only

when absolutely necessary. 1f Newton converges at each point of a one

dimensional search, then no derivativaes or matrix inverslons are required

during the search.
Newton 1is considered to have converged it the coaditlon

NORMG = max lgt(Xt) | < EPSNEWT
ielsCc

‘e met wirhin ITLIM iterations. Currently {(using single precision
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arithmetic; 8 decimal digits), EPSNEWT = 107 and ITLIM = 10. If

NORMG has not decreased in zny set of 5 consecutive iterations (or the
above condition is not met in 10 iterations) Newton has not converged,
and the 2 alternatives on page 1 are tried, in an effort to achieve
convergence,

The first alternative is tried if the gradients of the objective and
the binding constraints have not yet been computed at the last feasible
point, XPREV. These gradients are evaluated, and an approximation to the
true B’lat XPREV is computed, using the current B_1 (evaluated at some
earlier feasible point) and the partial derivatives evaluated at XPREV.
This approximate inverse is computed as followa:

Let B be the basis matrix evaluated at XPREV, and B o the basis inverse

evaluated at some other point. The approximation to B_l is based on the

identity

B = Bo + (8 - Bo)

-1
= Bo (1-8 o (BO - B)) (26)

Let

A=BTF (B -B) (27)

o ‘o
Then, taking the {uvverse of both sides of (25) yields
-1 -1 -
B = (1 -0 BT (28)

If the points at which Bo and B are evaluated are sufficiently close
together, the norm of A will be less than unity, and (I-'A)'-l can be

expanded in a power series:

<1~A)'1=1+A+A2+......... (29)

This serizs ran bt . used tc approximate the Newton correction

. -1
§ =8B G (30)

where G is the vector of binding constraiuts. Using (28) and (29) in

A0 ylelis

6=[1+A+A2+ ........ 15; e

AL S}

— T -
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The ith order approximation tod, § 1 is obtained by truncating the series

i
expansion above at the term A :
i

§i=: A B;]'G , 1= 0,1,2,...
j=o
The vectors Si 2y be determined recursively as follows:
~1
8, =3
§,=@+MS =3 +4d,
§ =(1+Aa+a58 & +AQ+M0I =3 +ad
2 ¢ o o o o 1

In general
I =5, +A8j, j=0,1,...,1

or using the definition of A in (27)

5j+1=5o +§j _B;1 nsj, j=0,1,....4 (31)

Returning to alternative 1 on page 2 of the flow chart, this alternative
is implemented by choosing the order of approximation i ( i > 1) and, within
the Newton subroutine, approximating§ «8 ) 1 using the recursion (31).

For £ = 1, this is the approximation suggested by Abadie in [3] - [4].

If, after trying alternative 1, Newton again fails to converge, alternative
2 is tried, This alternative computes the time Bul at XPREV, uses it in
(25) to compute a new tangent vactor, and returns to the Newton subroutine. If
Newton still fails to converge, the final alternative is tried: the objective
1s set to a very large value (1030), and we leave subroutine REDOBJ, returning
to the one dimensional search subroutine. The large objective value will cause
the gearch subroutine to decrsace ~. This will occur either in block 3
or biock 11 of the subroutine. This cutback procedure wiil continue until
Newton converges. This must nappen eventually, since Newton will converge

1f the initial point 1s close enough to the solution.
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Once Newton nas converged, we check the pesitive 84 constraiats to
sec if any are now binding or violated. Let the point Newton has obtained

be A A -
X = (y(a), x + g&)

where
gi(y(fb, x + ad) = 0, 1cIBC

Assume that some nonbinding constraints are violated;
Vol

gi(x) < 0, 1eIVC
The program attempts to find the point st which the first nonbinding
constraiat went to zero. That is, we wish to find the smallest value of
o, a*, such that all constraints in IBC are binding, ezactly one
constraint from IVC is binding, and all other constraints in IVC are
positive. Hence a* satisfies

8y (y{a), X + ad) = 0, icIBC (32)

81 (y(a), x + ad) =0
and

gy (v(@), x + ad) > 0, 1eIVC, 1 # k

where keIVC., This is illustrated in figure 3.6 where IVC = (2,3), k = Z.

b ———-

N e
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Cf course, the index k is not known in advance, s. linear ‘nterpolation

is used in block 3, page 2, to estimate the values of c«*and k. The

Jacobian for (32), J, is

J = 8 :S
- -4 o
w ET

where

w = 3gk/8y

£ = (9g, /o)
and s is an NB component column vector whose elements are (agilax)Td
for i €IBC. Since J involves only adding a border to the current basis
matrix, B, its inverse is easily computed 1if B‘l is known. In our program,
the border vectors w,s,t are evaluated at the last feasible point, XPREV,
and, as a first try, the current B-'1 is used, even if it was evaluated at
a point other than XPREV. The resulting J_l may be a kind of Yhybrid®,
but if Newton converges, an inversion of B has been saved. Locking at
figure 3.6, since Newton converged to §: using the current p ! and starting
from XPREV, one would expect it to converge to the point X%, which is closer
to XPREV, even though an additional constraint has been added. If Newton
fails to converge, the same three alternatives as before (with minor
rodifications - see block 5, page 3) are tried, until convergence is achieved.
Then the remaining constraints in IVC are checked to see if they are positive.
If one or more are negative, then the linear imtcrpolation estimate of which
coustraint was violated first was in ervor. We go back to the linear inter-~
polation block, as the first step toward firnding a new value of a*. This
cycle may be repeated a number of times, but the sequence of o* values
should decrease. If not, the procedure is not working end we stop with an
error massage. Otherwise, we leave this section of code with k as the index

cf 2 new hHindiag constraint and of as the o value at which this constraint

cwm——

ey,
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is binding.

The last major task in REDO3J I3 to deal with any basic variables
which have violated their bounds. This occurs in subroutine BSCHNG
(block 4, page 2 of REDOBJ flow chart). Turning to its flow chart, the
first action (block 1., page 1) is to check if any bounds on basic
variables have been violated. Note that, if auny 8¢ constraints had been
violated, the basic variables are now equal to their values at the
point X* = (y*,<; + a*d). For example, in figure 3.6, the y value at
X* might be below its lower bound. If scame basic variables do violate
their bounds, we proceed through essentfally the same logic as is used
in dealing with violated 8y constraints. The result is a value of ¢,

% s such that all components of y(ab) except one are strictly between
their bounds, with that omne, 3" equal to one of its bound values.
Then, after storing the current feasible peint as XPREV, we leave
subroutine REDOBJ.

The next subroutine encountered in evaluating the reduced objective
is NEWG. 1If a new 8y constraint and/or a bound onr ¢ dasic variable has
been made binding in REDOBJ, NEWG decides whether or not it should remain
binding. The behavior of the objective F(x) is the determining factor.
Using figure 3.6 as an example, if the one dimensional winimum of F
occurs for a less than o%, ther the new constraint g, is not made binding.
Tho one dimensional minimum lies in the current constraint intersection.

so the step size is reduced, and the search for an optimal o« continues.

1f, however, F is still decreasing at u*, the one dimensional minimum

is on the boundary nf the current constraint intersection. The new

N o

constraint £a is made binding and the one dimensional search terminates.

o r——— A nonr———st cmtu————— (. . 22
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If Soth 2 bound on a basic variable and a new 8; constraint become binding
in REDOBJ, this logic still applies, but with a* replaced by min (a*, ab).
The program has been designed to make these decisions without using
derivatives. 1If in block 1, page 1, the objective at min (a*, ab) is
larger than that at the last feasible point, then the new constraint is not
aud: a. This 1is case 1 of figure 3.7. If the objective £s smaller, then
we must determine 1f case 2a or case 2b of figure 3.7 holds. The reduced
objective is evaluated at a point nine-tenths of the distance between the
last feasible o value and min (a*, ab). If the objective value there is
smaller than that at min (a*, ab), case 2b is assumed to hold and the new
constraint is not added. Otherwise case 2 a helds. Either a new
constraint is added or the basis is changed, after whick we return to the

start of the main GRG program with a new reduced problem to solve.

The new constraint incorporation or basis change is carried out in
subroutine CONSBS. The input to this subroutine is a list of indices of
variables, the candidate list. 1In block 2 of the NEWG flow ch-rt, this
list is set equal to the current list of basic variables. Then CONSBS
is called. The outputs of CONSBS are (a} a new list of binding constraint
indices (b) a new list of basic variable indices and (c) 2 new basis inverse,
called BI¥v in the flow chart of CONSBS. On page 1 of this flow chart,
the array IREM contains the list of rows which remain to be pivoted in.

This is initialized in block 1. The subroutine operates in 2 modes, indicated
by the variable MODE. When MODE =~ 1, CONSBS will choose pivot columns

from whatever candidate list was input to it., TIf a basis inversa could

not be constructed from columns in this ~andidate list, or if the original
candldate list included all variables (NCAND = N, block 2), MODE is set

to 72, and CONSBS wiil choose pivot cclumns from the list of all admissable 4

columne. A 2olumn is admissable if its variable is farther than EPSBOUNDS




26~

(currently 10-6) from its nearest bound, and if it has not yet been pivoted
in,

The main loop of CONSBS bezins at block 3. A pivot row is chosen as
IROW in block 4. The choice of ISV in block 5 is motivated by the desire
to have basic variables as far from their bounds as possible, so that fewer
basis changes will be required. The other criterion influencing the choice
of basic vari-vies is that the basis matrix should be well-conditioned.

We try to insure this by chcosing as a prospective pivot column that index,
I, in ISV yielding

max |TAB (IROW, T)|
LeISV

This is done in block 6. If the element cheosen passes 2 tests we pivot

on it (block 8), transforming the Jacobian and entering that column into
B-l. The column pivoted in is marked inadmissable (block 7), and the
proceduve is repeated for each binding constraint until either B"1 has been
constructed (N branch, block 9) or the candidate list has been exhausted

(Y branch, block 10).

The two tests that a pivot element must pass are (2) its absolute
value must be larger than EPSPIVOT (currently 10—6) and (b) the absolute
value of the ratic of all other elements in the pivot column to the
pivot element must be less than RTOL (currently 100). The first test

insures that we do not pivot on an element that is essentially zero, while

the second protects against the generatlon of elements of large absolute

-1
value in B ~, Such values are symptumatlic of ill-conditioned basis matrices.

If either test is failed while MODE = 1, we simply do not pivot ir the

current row, and move on to the next one.

Eaan = e




If, when mode 1 terminates, B-l has not yet been corstructed, we
attemrt to complete its construction by considering columms not in the
original candidate list. HMode 2 is entered at marker(?}of the flow chart.
In block 11, the candidate list, ICAND, is reset to thé(set of all
remaining admissable columns, MODE is set to Z, and we return to the start
of the pffgﬁ%fgrative loop. 1If, in this second phase. a pivot element fails
the absolute value test, we temporarily mark all columns in ISV
inadmissable (by setting their indicator in the IGNORE array
to 1, in block 12) and choose a new ISV array. If all admissable matrix
elements in a row fail the absolute value test, the matrix is considered
to be singular. If a pivot element fajils the ratio test in mode 2, it
is deleted from ISV in block 13, and the ISV element with second largest
absolute value is tried, and so cn., If all fail, we set ISKIP = 1 in block

14, which causes us tc pivot on the element originally selected, ignoring

the ratio test.
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4. A Sumerical Example

Consider the problem

2
minimize F(X) = (Xl -1+ (X, - 0-8)2

subject to
gl(x) = Xl- X, ~ X =0

2 3

2
g, (X) = -X; +X, -X, =0
g3(X)=x1+x2 X5 - 1=0

%, 20,0<X%,<0.8, X320,X, >0, X520
where X3, XA, XS are slack variables. The feasible region for this
problem is graphed in figure 4.1, along with contours of constant value
of the objective. The constrained cptimum is on the surface G, = 0 at the
point X; = 0.894, X, = 0.8. The starting point is X1 = 0.6, X2 = 0.4,
which lies on the line 8y = 0, and XZ is the initial basic variable.

Hence -1
y =%, x= (xl,xz) = (Xl, XS), B =1

The objective of the first reduced problem, F (x), is obtained by solving
84 for XZ’ yielding
and substituting this into £, yielding

- X 2

2
F() = (X -1+ (0.2 +X )

5
whose gradient at x = (0.6, 0) is

UF(x) = (GF/ax1 , 8F/8x2) = (0, ~ 0.8}
Since XS is at lower bound, the initial H matrix is (see block 1, page
1, main GRG program flow chart)

1 0

- -
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in block 2, page 1 of the maln GRG program, we check if XS should be
released from its lowar bcund. Since the Kuhn-Tucker multiplier for
this bound is negative:

£_ -

Xy = X5 is released from its lower bound. The new H is

SO mow

d=-H VF = (0, 0.8)

o e - - - -

and we enter the one-dimensional search subroutine with a = 4,
This initial one dimensional search varies Xl and X5 according to

X, = 0.6

1
Xs = 0 + 0.8«
so¢ we move along the vertical line shown in figure 4.1. The initial
step size is chosen tc limit the percent change in any variable to less
than 5% or, if a variable is zero, to limit the absolute change in
such variables to be less than 0.1. This latter criterion applies
here, since only X2 is changing, and its initial value is zero. Hence,
the initial «, G is chosen such that
0,84 = 0,1
0
ot
a = 0,125
o
The sequence of a and objective values generated by the one dimensional

search is:

o cbiective
0 0.32
0.125 0.25
0,250 0.20

e = A o g S o =

e d

1]

———— T,
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The sequence of points generated is shown as points 1, 2, 3 in figure
4.1, For a = 0.750, X, =X, = 0.6, which lies on the comstraint g = 0.
The fact that 81 has become vinding is detected in block 6, page 2 of
REDO3J. Since the reduced objective is lower at a = 0,250 than at
the previous point, the N branch is taken in block 1 of NEWG. The
reduced objective is computed at a = 0.2375, and since its value there,
0.2041,1s larger than the value at a = 0.250, the ore dimensional
minimum over the interval [0, 0.250] is assumed to occur at « = 0.250,
i.e case 2a of figure 3.7 holds. A new bagis is constructed in
subroutine CONSBS, which yields

IBC = {1}

basic variable y = X2

nonbasic variables x = (xl, xz) = (Xl. X3)

37t = 1)
Control is then transferred back to point(jl page 1, of the main GRG
flow chart, and the second major iteration begins.

Since X3 is at lower bound, H 1s set to

/’1 0
q =
\o 0

The reduced gradient at x = (0.6, 0) is
VF = (-1.2, 0.4)
SO
d = -HVF = (1.2, 0)
Wo variables are released from thelr .ounds, « = +~, and the one

dimensional search begins, varying the nonbasics according to

v

1
V., = 0

*7
)

0,56 + 1.20

i

o ereny

A b . g - -
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This corresponds to motion along the line g = 0. The sequence of

a and objective values generated is

a objective

0 0.2

0.025 0.1658

0.05 0.1352

0.10 0.0848

0.20 X, < 0.8
violated

Figure 4.1 shows the corresponding values of X1 and X2 as points

5 thr- 8. The last «a value, a = 0.20, yields X, = 0.84, Xz = 0.84,

1
which violates the upper bound on Xz. This is detected in REDOBJ by

subroutine BSCHNG, which attempts to satisfy the upper bound by
solving the system

g1 (y, x+ad) =0,6+1.20a ~X, =0

2

X, = 0.8

2
which yields o = 0.166, corresponding to point 9 of figure 4.1. The

objective value at point 9 is 0.0400, which is smaller than the value of

0.848 at the last feaslble point, point 7. Hence, in NEWG, we take

the N branch in block 1, and evaluate F at o = 0.160 in the next block,

”~
(point 10, figure 4.1) yielding F = F = 0.0433, This is larger than

the value at point 9, so 9 is accepted as the minimum, and subroutine

CONSBS 1s called. This yields a new set of basic variables, and a new

basis as follows:
IBC = {1}
basic variables y = Xl
nonbasic variables x = (Xz, X3)
37 = (1)
After leaving CONSBS, we return to page 1 of the main GRG flow chart
to begin the third major iceration.

Stnce hoth nonbasic variables are at upper bounds, H is set

tn «he zoye matrix. To obtain the current reduced objective, we solve

b h—— A R
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the binding constraint for tle basic variable in terms of the nonbasic:
8 xX) = Xy ~%) -X3=0
so

X, =X, +X

1 2 3

Substituting the above into the objective yields the reduced objective as
FG) = (&, + X5 - D7 + (x, - 0.8)
whose gradient at X2 = 0.8, X3 =0 is
VF = {-0,4, - 0.4)
In block 2, page 1 of the main GRG program, X3 has a negative multiplier
with value -0.4, so it is released from its lower bound.

H is set to 0 0

and the search direction is

d = ~HVF = (0, 0.4)
We begin the one dimensional search, with the nonbasics varied
according to

XZ = 0.8

X

3 0+ (0.4)o

The a and objective values generated by this gearch are

o objective

0 0.04

0.16 0.018

0.32 Ro violatedl

The corresponding values of X1 and X2 are shown as points 11 and 12
in figure 4.1. Sutroutine REDOBJ detects the violation cof 8gs and
attempts to make g, binding by solving the system

2, (v, x +ad) = X; - 0.8 -~ 0.4ba =0

e st A
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e e e e &

g ¥, x+ad) = -xi +0.8 =0
This is accomplished in one iteration of Newton's method, starting
from initial values

(X1 , @) = (0.893, 0.234)

(computed in block 3, page 2 of REDOBJ), with inverse Jacobian

1 -0.4 ! -0.578
it e
1 728 J LZ 50 -1.44]
The final values are X = 0.894, o = 0,236 which corresponds to point
13 of figure 4.1. The ohjective value at that point is C.0111, which
is lower than the value at the last feasible point, point 11. Hence,
in NEWG, the objective is evaluated at point 14, which is 0.9 of
the distance between points 11 and 13, corresponding to a = 0.2285,
The value there is ? = 0,0117, which is larger than the value at point
13, so subroutine CONSBS is called to construct a new basis. The
results are
IBC = {2}
basic variables y = Xl
nonbasic variables x = (Xz, X4)
571 = ~0.5590
Returning to page 1 of the main GRG program flow chart, the

*

reduced gradient is ;

-

VF = (-0.118, 0.118) i
Since X2 i{s at upper bound and X4 at lower bound, the Kuhn-Tucker
multipliers for these bounds are

Ay = EF/BXQ = 0.118

ol =

X

T

= :\F/EXA = 0.118
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Since both are positive, point 13 is optimal.
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